sina +2sin2a + sin3a / cos a +2cos2a + cos 3a =tan2a
Answers
Question :- Prove that
Consider LHS
can be re-arranged as
We know,
And
So, using these results, we get
Hence,
Additional Information :-
Answer:
Question :- Prove that
\begin{gathered}\rm \: \dfrac{sina + 2sin2a + sin3a}{cosa + 2cos2a + cos3a} = tan2a \\ \end{gathered}
cosa+2cos2a+cos3a
sina+2sin2a+sin3a
=tan2a
\large\underline{\sf{Solution-}}
Solution−
Consider LHS
\begin{gathered}\rm \: \dfrac{sina + 2sin2a + sin3a}{cosa + 2cos2a + cos3a} \\ \end{gathered}
cosa+2cos2a+cos3a
sina+2sin2a+sin3a
can be re-arranged as
\begin{gathered}\rm \: = \: \dfrac{(sin3a + sina) + 2sin2a}{(cos3a + cosa) + 2cos2a} \\ \end{gathered}
=
(cos3a+cosa)+2cos2a
(sin3a+sina)+2sin2a
We know,
\begin{gathered}\color{green}\boxed{ \rm{ \:sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\ \end{gathered}
sinx+siny=2sin[
2
x+y
]cos[
2
x−y
]
And
\begin{gathered}\color{green}\boxed{ \rm{ \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\ \end{gathered}
cosx+cosy=2cos[
2
x+y
]cos[
2
x−y
]
So, using these results, we get
\begin{gathered}\rm \: = \: \dfrac{2sin\bigg[\dfrac{3a + a}{2} \bigg]cos\bigg[\dfrac{3a - a}{2} \bigg] + 2sin2a}{2cos\bigg[\dfrac{3a + a}{2} \bigg]cos\bigg[\dfrac{3a - a}{2} \bigg] + 2cos2a} \\ \end{gathered}
=
2cos[
2
3a+a
]cos[
2
3a−a
]+2cos2a
2sin[
2
3a+a
]cos[
2
3a−a
]+2sin2a
\begin{gathered}\rm \: = \: \dfrac{2sin2a \: cosa \: + \: 2sin2a}{2cos2a \: cosa \: + \: 2cos2a} \\ \end{gathered}
=
2cos2acosa+2cos2a
2sin2acosa+2sin2a
\begin{gathered}\rm \: = \: \dfrac{2sin2a \:( cosa \: + \: 1)}{2cos2a \:( cosa \: + \: 1)} \\ \end{gathered}
=
2cos2a(cosa+1)
2sin2a(cosa+1)
\begin{gathered}\rm \: = \: \dfrac{sin2a}{cos2a} \\ \end{gathered}
=
cos2a
sin2a
\begin{gathered}\rm \: = \: tan2a \\ \end{gathered}
=tan2a
Hence,
\begin{gathered}\color{green}\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{sina + 2sin2a + sin3a}{cosa + 2cos2a + cos3a} = tan2a \: }} \\ \end{gathered}
⟹
cosa+2cos2a+cos3a
sina+2sin2a+sin3a
=tan2a
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x - y) = sinx \: cosy \: - \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \: + \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: - \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\ \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★sin(x−y)=sinxcosy−sinycosx
★sin(x+y)=sinxcosy+sinycosx
★cos(x+y)=cosxcosy−sinxsiny
★cos(x−y)=cosxcosy+sinysinx
★tan(x+y)=
1−tanxtany
tanx+tany
★tan(x−y)=
1+tanxtany
tanx−tany
Hope it helps you
Please mark me as the brainliest and drop some thanks