Math, asked by katyalharsh65, 9 months ago

sinA= a/b find the value of tanA​

Answers

Answered by Asterinn
4

GIVEN :

 \sin(A)  =  \frac{a}{b}

TO FIND :

 the \: value \: of \: \tan(A)

FORMULA USED :

 \sin(θ) =  \frac{perpendicular \: or \: height}{hypotenuse}

\tan(θ)  =  \frac{perpendicular \: or \: height}{base}

or

\tan(θ)  =  \frac{ \sin(θ) }{ \cos(θ) }

base = \sqrt{ {(hypotenuse)}^{2}  -  {(height)}^{2} }

SOLUTION :

It is given that :-

⟹SinA =  \frac{a}{b}

Now , we know :-

 \sin(θ) =  \frac{perpendicular \: or \: height}{hypotenuse}

Therefore ,

  • a = height/ perpendicular
  • b = hypotenuse

Now we have to find base :-

⟹base \: = \sqrt{ {(hypotenuse)}^{2}  -  {(height)}^{2} }

⟹base = \sqrt{ {b}^{2}  -  {a}^{2} }

Now we know :-

⟹\tan(θ)  =  \frac{perpendicular \: or \: height}{base}

⟹tan(A) =  \frac{a}{ \sqrt{ {b}^{2}  -  {a}^{2} }}

ANSWER :

tan(A) =  \frac{a}{ \sqrt{ {b}^{2}  -  {a}^{2} }}

_____________________________

Learn more :-

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

_________________________

Attachments:
Similar questions