(SinA-cosA) (1+tanA+cotA) =secA/cosec sqr A - cosecA/sec sqr A, proofit
Answers
Answered by
0
(sin a - cos a)(1 + tan a + cot a)
Multiply sin and cos separately with the other expression.
sin a (1 + tan a + cot a) - cos a (1 + tan a + cot a)
sin a + (sin a * sin a / cos a ) + (sin a * cos a / sin a) - cos a - (cos a * sin a / cos a) - (cos a * cos a /sin a )
as tan a = sin a / cos a and cot a = cos a / sin a
So,
sin a + sin^2 a / cos a + cos a - cos a - sin a - cos^2 a / sin a
sin^2 a / cos a - cos^2 a / sin a
Now,
sin^2 a = 1 / cosec^2 a and cos a = 1 / sec a
So,
we get,
sec a / cosec^ 2 a - cosec a / sec^2 a = RHS
Hence Proved
Similar questions