SinA+CosA=√2
TanA+CotA=2
Then find,
1) SinA×CosA
2) SecA×CosecA
3) Sin^2A-Cos^2A
Answers
Answered by
16
Answer:-
Given :
Sin A + Cos A = √2
(Square on both sides)
→ (Sin A + Cos A)² = (√2)²
Using (a + b)² = a² + b² + 2ab
→ Sin² A + Cos² A + 2*Sin A * Cos A = 2
By using Sin² A + Cos² A = 1
→ 1 + 2 * Sin A * Cos A = 2
→ 2*Sin A * Cos A = 2 - 1
→ Sin A * Cos A = 1/2 (1)
→ 1/Cosec A * 1/Sec A = 1/2
After cross multiplication we get,
→ 2 = Sec A * Cosec A
→ Sec A * Cosec A = 2 (2)
We know that,
a² - b² = (a + b)(a - b)
To find (a - b) i.e., Sin A - Cos A
We know,
(a - b)² = (a + b)² - 4ab
→ (Sin A - Cos A)² = (Sin A + Cos A)² - 4*Sin A* Cos A.
→ (Sin A - Cos A)² = (√2)² - 4(1/2)
→ (Sin A - Cos A)² = 2 - 2 = 0
→ Sin A - Cos A = 0
Now,
Sin² A - Cos² A = (Sin A + Cos A)(Sin A - Cos A)
→ Sin² A - Cos² A = (√2)(0)
→ Sin² A - Cos² A = 0 (3)
Similar questions