sinA+cosA=root 3
then proove
tanA+cotA=1
Answers
Answered by
6
Answer:
Given:
SinA+cosA=√3
To prove:
TanA+cotA=1
Solution:
sinA+cosA=√3
Squaring on both sides,
sin²A+cos²A+2sinA.cosA=3
As we know that,
Sin²x+cos²x=1
1+2sinA.cosA=3
2sinA.cosA=2
SinA.cosA=1
Now,
→tanA+cotA
→sinA/cosA+CosA/sinA
→sin²A+cos²A/sinA.cosA
→1/sinA.cosA
→1/1=1
So, TanA+cotA=1
Step-by-step explanation:
Hope it helps you.....
Similar questions