Math, asked by tarakp772, 1 year ago

sinA +cosA = root3 than find tanA + cotA = 1

Answers

Answered by keerthika1998lekha
216
SinA + cosA = √3
Squaring on both sides we get,
(SinA + cosA)² = (√3)²
Sin²A + cos²A +2sinAcosA = 3
1 + 2sinAcosA = 3
2sinAcosA = 3-1
SinAcosA = 2/2
sinAcosA = 1......................(!)

tanA+cotA = 1
sinA/cosA + cosA/sinA = 1
sin²A + cos²A /sinAcosA = 1
1/sinAcosA = 1
sinAcosA = 1.....................(!!)

! = !!

thus tanA + cotA = 1


tarakp772: SinA + cosA = √3
Squaring on both sides we get,
(SinA + cosA)² = (√3)²
Sin²A + cos²A +2sinAcosA = 3
1 + 2sinAcosA = 3
2sinAcosA = 3-1
SinAcosA = 2/2
sinAcosA = 1......................(!)
keerthika1998lekha: what?
tarakp772: Continuataiom......sinAcosA = 1(Since sin²A + cos²A= 1 SinAcosA= sin²A + cos²A Divide both sides by sinAcosA sinAcosA/sinAcosA= sin²A/sinAcosA + cos²A/sinAcosA Then, 1= sinA/cosA+ cosA/sinA Then, 1= TanA+ Cot A Hence Proved..........................
tarakp772: This is Correct
tarakp772: Apt
keerthika1998lekha: then y did u post the question?
tarakp772: We got the answer just now
keerthika1998lekha: hmm
keerthika1998lekha: thnks
Answered by 2092000
38
given that sinA+cosA=√3
tanA+cotA=sin^2A+cos^2A/sinAcosA=1/sinAcosA
(sinA+cosA)^2=1+2sinAcosA.........(1)
given that sinA+cosA=√3 
(1)⇒3-1/2=sinAcosA=1
hence proved

Similar questions