(sinA+cosA)/secA+cosecA)=sinA . cosA
Answers
LHS = (Sin A + Cos A)(Sec A + Cosec A)= 2 + Sec A Cosec A
⇒
⇒
⇒
⇒
__________
We also know that,
⇒ Sin² A + Cos² A = 1
_________________
Hence,
⇒
⇒
⇒
⇒
⇒
⇒ 2 + Sec A Cosec A
⇒ RHS
∴ LHS = RHS
∴ Hence, Proved,.
Answer:
Step-by-step explanation:
Given that,
L.H.S. = ( sin A + cos A ) / (sec A + cosec A )
= ( sin A + cos A ) / ( 1 / cos A + 1 / sin A )
= ( sin A + cos A ) / ( sin A + cos A / sin A. cos A )
= (sin A + cos A ) × (sin A . cos A ) / (sin A + cos A )
= sin A . cos A (∵ Numerator and Denominator (sin A + cos A )are cancelled)
= R.H.S..
∴ L.H.S. = R.H.S. ( ∵ sec A = 1 / cos A and cosec A = 1 / sin A )
Hence ( sin A + cos A ) / ( sec A + cosec A ) = sin A . cos A is proved.