Math, asked by Khushioberoijb5369, 11 months ago

(SinA+cosecA)^2+(cosA+secA)^2-(tan^2A+cot^2A)=7

Answers

Answered by madhuragarge4999
1

Answer:

Step-by-step explanation:

l.h.s.

(sina+coseca)^2+(cosa+seca)^2

= (sin2a + cosec2a + 2sina.coseca)+(cos2a+sec2a+2seca.cosa).........(a+b)^2 formula

= (sin2a + cosec2a+2sina.1/sina)+(cos2a+sec2a+2cosa.1/cosa)

= (sin2a + cosec2a+2)+(cos2a+sec2a+2)

= (sin2a+cos2a)+4+ cosec2a+sec2a)

= 1+ 4 +( 1 + cot2a) +(1+ tan2a).........cosec2a=( 1 + cot2a) & sec2a=+(1+ tan2a)

= 7+ cot2a+ tan2a

l.h.s.

(sina+coseca)^2+(cosa+seca)^2-tan2a-cot2a= 7

proved......

Answered by sandy1816
0

( {sina + coseca})^{2}  + ( {cosa + seca})^{2}  - ( {tan}^{2} a +  {cot}^{2} a) \\  \\  =  {sin}^{2} a +  {cosec}^{2} a + 2 +  {cos}^{2} a +  {sec}^{2} a + 2 -  {tan}^{2} a -  {cot}^{2} a \\  \\  = 5 + 1 +  {cot}^{2} a + 1 +  {tan}^{2} a -  {tan}^{2} a -  {cot}^{2} a \\  \\  = 7

Similar questions