Math, asked by mrun6, 10 months ago

sinA - CosoA +1
SinoA + CosoA -1=1/(secA - tanA)​

Answers

Answered by sarththakar
1

Answer:

cos A = 1-sinA this easy not so hard

Answered by harendrachoubay
0

\dfrac{\sin A-\cos A +1}{\sin A+\cos A-1} =\dfrac{1}{\sec A-\tan A}, proved.

Step-by-step explanation:

Prove that, \dfrac{\sin A-\cos A +1}{\sin A+\cos A-1} =\dfrac{1}{\sec A-\tan A}.

L.H.S. =\dfrac{\sin A-\cos A +1}{\sin A+\cos A-1}

=\dfrac{\sin A-(\cos A -1)}{\sin A+(\cos A-1)}

Rationalising numerator and denominator, we get

=\dfrac{\sin A-(\cos A -1)}{\sin A+(\cos A-1)}\times \dfrac{\sin A-(\cos A-1)}{\sin A-(\cos A-1)}

=\dfrac{[\sin A-(\cos A -1)]^2}{\sin^2 A-(\cos A-1)^2}

=\dfrac{[\sin^2 A+(\cos A -1)]^2+2\sin A(\cos A -1)}{\sin^2 A-\cos^2 A-1+2\cos A}

=\dfrac{\sin^2 A+\cos^2 A+1-2\cos A+2\sin A\cos A -2\sin A}{\sin^2 A-\cos^2 A-1+2\cos A}

= \dfrac{1+\sin A}{\cos A}

=\sec A+\tan A

R.H.S. =\dfrac{1}{\sec A-\tan A}

=\dfrac{1}{\sec A-\tan A}\times \dfrac{\sec A+\tan A}{\sec A+\tan A}

=\dfrac{\sec A+\tan A}{\sec^2 A-\tan^2 A}

Using the trigonometric identity,

\sec^2 A-\tan^2 A=1

=\sec A+\tan A

∴ L.H.S. = R.H.S. =\sec A+\tan A, proved.

Similar questions