(Sina +seca)2 + (cosa +coseca)2=(1+cosecaseca)2
Answers
Answered by
1
heya it's Aastha....
◆ Taking LHS.
(sinA + secA)2 +( cosA + CosecA)2
= sin2A +sec2A +2sinAsecA +cos2A +cosec2A +2cosAcosecA
= (sin2A + cos2A) + (sec2A +cosec2A) +( 2sinA/cosA + 2cosA/sinA)
=1 + (1/cos2A + 1/sin2A) + ( 2sin2A +2cos2A/sinAcosA)
=1 +(sin2A +cos2A/sin2Acos2A) +[ 2(sin2A+cos2A) / sinAcosA]
=1 + 1/sin2Acos2A + 2/sinAcosA
= (1 + 1/sinAcosA)2
= (1 + cosecAsecA)2
=RHS .
Hence proved.
I hope it help you
◆ Taking LHS.
(sinA + secA)2 +( cosA + CosecA)2
= sin2A +sec2A +2sinAsecA +cos2A +cosec2A +2cosAcosecA
= (sin2A + cos2A) + (sec2A +cosec2A) +( 2sinA/cosA + 2cosA/sinA)
=1 + (1/cos2A + 1/sin2A) + ( 2sin2A +2cos2A/sinAcosA)
=1 +(sin2A +cos2A/sin2Acos2A) +[ 2(sin2A+cos2A) / sinAcosA]
=1 + 1/sin2Acos2A + 2/sinAcosA
= (1 + 1/sinAcosA)2
= (1 + cosecAsecA)2
=RHS .
Hence proved.
I hope it help you
Answered by
1
Hey....your answer goes here.....
Hope it's helpful to u....☺☺☺
Hope it's helpful to u....☺☺☺
Attachments:
Similar questions