sinA+sin3A\cosA+cos3A=tanA
Answers
Answered by
0
recall the identities cosA - cos B = -2sin((A+B)/2) .sin((A-B)/2)
and sinA - sinB = 2cos((A+B)/2) .sin((A-B)/2)
(cosA-cos3A)/(sin(3A-sinA)
= [ -2sin(4A/2).sin(-2A/2) ] / [ 2cos(4A/2).sin(2A/2) ]
= [2sin(2A).sin(A) ] / [ 2cos(2A).sin(A) ] as sin(-A) = -sinA
= sin2A/cos2A
= tan2A
Similar questions