sinA + sinB = -21/65 and cosA+cosB =-27/65 then value of cos[(A-B)] is?
Answers
Answered by
2
cos A cos B + sin A sin B
(4/5) (5/13) + (3/5)(12/13)
20/65 + 63/65
83/65
(4/5) (5/13) + (3/5)(12/13)
20/65 + 63/65
83/65
Answered by
0
5 answers · Mathematics
Best Answer
Do you know this identity: cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
You need to calculate cos(a) and sin(b)
To calculate cos(a)
cos²(a) + sin²(a) = 1
cos²(a) = 1 - sin²(a) → given sin(a) = 3/5
cos²(a) = 1 - (3/5)²
cos²(a) = (25/25) - (9/25)
cos²(a) = 16/25
cos²(a) = (± 4/5)²
→ cos(a) = ± 4/5
To calculate cos(a)
cos²(b) + sin²(b) = 1
sin²(b) = 1 - cos²(b) → given cos(b)
sin²(b) = 1 - (5/13)²
sin²(b) = (169/169) - (25/169)
sin²(b) = 144/169
sin²(b) = (± 12/13)²
→ sin(b) = ± 12/13
cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
First case:
given sin(a) = 3/5 → cos(a) = 4/5
given cos(b) = 5/13 → sin(b) = 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (4/5).(5/13) + (3/5).(12/13)
= (20/65) + (36/65)
= 56/65
Second case:
given sin(a) = 3/5 → cos(a) = 4/5
given cos(b) = 5/13 → sin(b) = - 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (4/5).(5/13) + (3/5).(- 12/13)
= (20/65) - (36/65)
= - 16/65
Third case:
given sin(a) = 3/5 → cos(a) = - 4/5
given cos(b) = 5/13 → sin(b) = 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (- 4/5).(5/13) + (3/5).(12/13)
= - (20/65) + (36/65)
= 16/65
Fourth case:
given sin(a) = 3/5 → cos(a) = - 4/5
given cos(b) = 5/13 → sin(b) = - 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (- 4/5).(5/13) + (3/5).(- 12/13)
= - (20/65) - (36/65)
= - 56/65
Conclusion:
cos(a - b) = ± 16/35
or
cos(a - b) = ± 56/65
Best Answer
Do you know this identity: cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
You need to calculate cos(a) and sin(b)
To calculate cos(a)
cos²(a) + sin²(a) = 1
cos²(a) = 1 - sin²(a) → given sin(a) = 3/5
cos²(a) = 1 - (3/5)²
cos²(a) = (25/25) - (9/25)
cos²(a) = 16/25
cos²(a) = (± 4/5)²
→ cos(a) = ± 4/5
To calculate cos(a)
cos²(b) + sin²(b) = 1
sin²(b) = 1 - cos²(b) → given cos(b)
sin²(b) = 1 - (5/13)²
sin²(b) = (169/169) - (25/169)
sin²(b) = 144/169
sin²(b) = (± 12/13)²
→ sin(b) = ± 12/13
cos(a - b) = cos(a).cos(b) + sin(a).sin(b)
First case:
given sin(a) = 3/5 → cos(a) = 4/5
given cos(b) = 5/13 → sin(b) = 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (4/5).(5/13) + (3/5).(12/13)
= (20/65) + (36/65)
= 56/65
Second case:
given sin(a) = 3/5 → cos(a) = 4/5
given cos(b) = 5/13 → sin(b) = - 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (4/5).(5/13) + (3/5).(- 12/13)
= (20/65) - (36/65)
= - 16/65
Third case:
given sin(a) = 3/5 → cos(a) = - 4/5
given cos(b) = 5/13 → sin(b) = 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (- 4/5).(5/13) + (3/5).(12/13)
= - (20/65) + (36/65)
= 16/65
Fourth case:
given sin(a) = 3/5 → cos(a) = - 4/5
given cos(b) = 5/13 → sin(b) = - 12/13
= cos(a).cos(b) + sin(a).sin(b)
= (- 4/5).(5/13) + (3/5).(- 12/13)
= - (20/65) - (36/65)
= - 56/65
Conclusion:
cos(a - b) = ± 16/35
or
cos(a - b) = ± 56/65
Similar questions