sinA+sinB÷sinA-sinB=tanA+B÷2×cotA-B÷2
Answers
Answered by
11
Given: sinA+sinB÷sinA-sinB=tanA+B÷2×cotA-B÷2
To find: Prove LHS = RHS.
Solution:
- Now we have given the trigonometric term as:
( sinA + sinB ) / ( sinA - sinB ) = tan ( A + B / 2) cot ( A - B / 2 )
- Lets consider LHS, we have:
( sinA + sinB ) / ( sinA - sinB )
- We can rewrite it as:
2 sin ( A + B / 2 ) x cos ( A - B / 2) / 2 cos ( A + B / 2 ) x sin ( A - B / 2 )
sin ( A + B / 2 ) x cos ( A - B / 2 ) / cos ( A + B / 2 ) x sin ( A - B / 2 )
tan ( A + B / 2 ) cot ( A - B / 2 )
RHS
Hence proved.
Answer:
So in solution part we proved that LHS = RHS
Answered by
4
Answer:
Here is your answer
Attachments:
Similar questions