Math, asked by sahupayal2503, 1 year ago

sinA+sinB÷sinA-sinB=tanA+B÷2×cotA-B÷2

Answers

Answered by Agastya0606
11

Given: sinA+sinB÷sinA-sinB=tanA+B÷2×cotA-B÷2

To find: Prove LHS = RHS.

Solution:

  • Now we have given the trigonometric term as:

                ( sinA + sinB ) / ( sinA - sinB ) = tan ( A + B / 2) cot ( A - B / 2 )

  • Lets consider LHS, we have:

                ( sinA + sinB ) / ( sinA - sinB )

  • We can rewrite it as:

                2 sin ( A + B / 2 ) x cos ( A - B / 2) / 2 cos ( A + B / 2 ) x sin ( A - B / 2 )

                 sin ( A + B / 2 ) x cos ( A - B / 2 ) / cos ( A + B / 2 ) x sin  ( A - B / 2 )

                tan ( A + B / 2 ) cot ( A - B / 2 )

                RHS  

                Hence proved.

Answer:

             So in solution part we proved that LHS = RHS

Answered by arpita112113
4

Answer:

Here is your answer

Attachments:
Similar questions