Math, asked by sharath157028, 9 months ago

sinA(tanA)/1-cosA=1+secA​

Answers

Answered by jpadmaja47
2

Answer:

Here is your answer

It may help you

Attachments:
Answered by Anonymous
10

{ \huge{ \mathbb{ \overbrace{ \underbrace{ \purple{ \boxed{ \fbox{ \bold { \large{ \mathtt{ANSWER}}}}}}}}}}}

 \large \green{ \mathtt{to \: prove =  > \frac{sinA.tanA}{1 - cosA} = 1 + sec A }}

 \large{ \green{ \mathtt{ \frac{sinA. \frac{sinA}{cosA} }{1 - cosA} }}} \\  \\  =  > \large{ \green{ \mathtt{ \frac{ {sin}^{2}A }{cos(1 - cosA)} }}} \\  \\  =  > \large{ \green{ \mathtt{ \frac{1 - co {s}^{2} A}{1 - cosA} }}} \\  \\  =  > \large{ \green{ \mathtt{ \frac{(1 - cosA)(1 + cosA)}{cos(1 - cosA)} }}} \\  \\  =  > \large{ \green{ \mathtt{ \frac{1 + cosA}{cosA} }}} \\  \\  =  > \large{ \green{ \mathtt{ \frac{1}{cosA} + \sf{ \cancel{ \dfrac{cosA}{cosA}}}   }}} \\  \\  =  >  \large{ \blue{ \boxed{ \fbox{ \mathtt{secA + 1}}}}} \:  \\  \\ \large \purple{   \underline{ \underline{\mathtt{hence \: proved}}} }

 \mathtt{ \red{hops \: this \: may \: help \: you}} \\  \huge { \red{\ddot{ \smile}}}

Similar questions