Math, asked by pmehak835, 1 year ago

sinA tanA /1-cosA =1+secA

Answers

Answered by jsvigneshbabu83
13
LET angle A=x

LHS=
 \frac{ \sin(x) \times  \frac{ \sin(x) }{ \cos(x) }  }{1 -  \cos(x) }  =  \frac{ { \sin(x) }^{2} }{ \cos(x)(1 -  \cos(x))  }  =  \frac{1 -  { \cos(x) }^{2} }{ \cos(x)(1 -  \cos(x)  }
ie

 \frac{(1 +  \cos(x) )(1 -  \cos(x)) }{ \cos(x) (1 -  \cos(x) )}  =  \frac{1 +  \cos(x) }{ \cos(x) }  =  \frac{1}{ \cos(x) }  +  \frac{ \cos(x) }{ \cos(x) }
ie
1 +  \sec(x)  =  \: rhs
Answered by sumedhabhardwaj1978
2

Answer:

L.H.S. = sinA tanA / (1 - cosA)

Multiplying and dividing by (1 + cosA)

= (sinA tanA)(1 + cosA) / (1 - cosA)(1 + cosA)

= (sinA tanA)(1 + cosA) / (1 - cos^2 A)

= (sinA tanA)(1 + cosA) / sin^2 A

= [(sin^2A/cosA)(1 + cosA)] / sin^2 A

= sin^2A (1 + cosA) / cosA sin^2 A

= (1 + cosA) / cosA

= 1/cosA + cosA/cosA

= secA + 1

= 1 + secA

= R.H.S.

Thats it dear.

Step-by-step explanation:

Similar questions