sinA×tanA/1-cosA=1+secA prove by taking LHS
Answers
Answered by
1
Answer:
Just mind my handwriting
Step-by-step explanation:
Hope it helped
Attachments:
Answered by
1
Answer:
Answer and explanation:
To prove : \frac{\sin A\cdot\tan A}{1-\cos A}=1+\sec A1−cosAsinA⋅tanA=1+secA
Proof :
Taking LHS,
LHS=\frac{\sin A\cdot\tan A}{1-\cos A}LHS=1−cosAsinA⋅tanA
LHS=\frac{\sin A\cdot\frac{\sin A}{\cos A}}{1-\cos A}LHS=1−cosAsinA⋅cosAsinA
LHS=\frac{\frac{\sin^2 A}{\cos A}}{1-\cos A}LHS=1−cosAcosAsin2A
LHS=\frac{\frac{1-\cos^2 A}{\cos A}}{1-\cos A}LHS=1−cosAcosA1−cos2A
LHS=\frac{\frac{(1-\cos A)(1+\cos A)}{\cos A}}{1-\cos A}LHS=1−cosAcosA(1−cosA)(1+cosA)
LHS=\frac{1+\cos A}{\cos A}LHS=cosA1+cosA
LHS=\sec A+1LHS=secA+1
LHS=RHSLHS=RHS
Similar questions