Sincubetheta+coscube theta /Sintheta +costheta
Answers
Answered by
1
Step-by-step explanation:
Hope this helps u Please make me as a brainliest
Attachments:
Answered by
2
we know that:- (x³ + y³) = (x + y)(x² + y² - xy)
and (sin²Ф + cos²Ф) = 1
Now the given questions is:- \bold{\frac{sin^3\theta + cos^3\theta}{sin\theta + cos\theta} + sin\theta*cos\theta}
now, using the formula of (x³ + y³) in the place of (sin³Ф + cos³Ф).
\bold{\frac{(sin\theta + cos\theta)(sin^2\theta + cos^2\theta - sin\theta*cos\theta)}{sin\theta + cos\theta} + sin\theta * cos\theta}
\bold{[(sin^2\theta + cos^2\theta) - sin\theta * cos\theta] + sin\theta * cos\theta}
\bold{1 - sin\theta * cos\theta + sin\theta * cos\theta}
\bold{=1}
\boxed{\large{\bold{HENCE, \frac{sin^3\theta + cos^3\theta}{sin\theta + cos\theta} + sin\theta*cos\theta = 1
Similar questions