Sininversex.+sininverse2x= pie/3
Answers
Answered by
0
Let θ=arcsinxθ=arcsinx and ϕ=arcsin2xϕ=arcsin2x
Hence,
x=sinθx=sinθ, 2x=sinϕ2x=sinϕ
θ+ϕ=π3θ+ϕ=π3
ϕ=π3−θϕ=π3−θ
⟹sinϕ=sin(π3−θ)⟹sinϕ=sin(π3−θ)
⟹sinϕ=sinπ3cosθ−cosπ3sinθ⟹sinϕ=sinπ3cosθ−cosπ3sinθ
⟹2x=3–√21−x2−−−−−√−x2⟹2x=321−x2−x2
⟹5x2=3–√×1−x2−−−−−√2⟹5x2=3×1−x22
Multiplying both sides by 22 and squaring,
25x2=3(1−x2)25x2=3(1−x2)
⟹25x2=3−3x2⟹25x2=3−3x2
⟹x2=328⟹x2=328
⟹x=±328
Hence,
x=sinθx=sinθ, 2x=sinϕ2x=sinϕ
θ+ϕ=π3θ+ϕ=π3
ϕ=π3−θϕ=π3−θ
⟹sinϕ=sin(π3−θ)⟹sinϕ=sin(π3−θ)
⟹sinϕ=sinπ3cosθ−cosπ3sinθ⟹sinϕ=sinπ3cosθ−cosπ3sinθ
⟹2x=3–√21−x2−−−−−√−x2⟹2x=321−x2−x2
⟹5x2=3–√×1−x2−−−−−√2⟹5x2=3×1−x22
Multiplying both sides by 22 and squaring,
25x2=3(1−x2)25x2=3(1−x2)
⟹25x2=3−3x2⟹25x2=3−3x2
⟹x2=328⟹x2=328
⟹x=±328
Similar questions