Sinpower6thita + cospower6thita=1-3sin square thita.cos sqare thita
Answers
Answered by
1
Answer:
Step-by-step explanation:
Sin⁶θ + Cos⁶θ = 1 - 3Sin²θCos²θ
L.H.S:
Sin⁶θ + Cos⁶θ
=> (Sin²θ)³ + (Cos²θ)³
we know that a³ + b³ = (a + b) (a² - ab + b²)
=> (Sin²θ + Cos²θ)(Sin⁴θ - Sin²θCos²θ + Cos⁴θ)
=> Sin⁴θ + Cos⁴θ - Sin²θCos²θ (∵ Sin²θ + Cos²θ = 1)
=> (Sin²θ)² + (Cos²θ)² - Sin²θCos²θ
We know that a² + b² = (a + b)² - 2ab
=> (Sin²θ + Cos²θ)² - 2Sin²θCos²θ - Sin²θCos²θ
=> 1 - 3 Sin²θCos²θ (∵ Sin²θ + Cos²θ = 1)
= R.H.S.
Hence proved
Similar questions