Math, asked by ßirju, 1 year ago

sinQ-cosQ+1/sinQ+cosQ-1=1/secQ-tanQ

Answers

Answered by Ayush1975
33

this help u mark me as brainlist
Attachments:
Answered by mysticd
39

Solution:

LHS = \frac{sinQ-cosQ+1}{sinQ+cosQ-1}

Divide numerator and denominator by cosQ , we get

= \frac{tanQ-1+secQ}{tanQ+1-secQ}

=\frac{secQ+tanQ-1}{1+tanQ-secQ}

/* By Trigonometric identity:

Sec²Q-tan²Q = 1 */

= \frac{secQ+tanQ-(sec^{2}Q-tan^{2}Q)}{1+tanQ-secQ}

= \frac{secQ+tanQ-(secQ+tanQ)(secQ-tanQ)}{1+tanQ-secQ}

= \frac{(secQ+tanQ)[1-(secQ-tanQ)]}{1+tanQ-secQ}

= \frac{(secQ+tanQ)[1-secQ+tanQ)]}{1-secQ+tanQ}

After cancellation, we get

= (secQ+tanQ)

Multiply numerator and denominator by (secQ-tanQ), we get

= \frac{(secQ+tanQ)(secQ-tanQ)}{secQ-tanQ}

= \frac{sec^{2}Q-tan^{2}Q}{secQ-tanQ}

= \frac{1}{secQ-tanQ}

= RHS

Similar questions