sinQ+cosQ=√2 show that sinQ+cosQ=2
Answers
Answered by
2
I'm assuming Theta (Q) as A.
CosA + SinA = CosA√2
SinA = CosA√2 - CosA (Take CosA common factor)
SinA = CosA ( √2 - 1) ----> Root sign is only for "2"
CosA = SinA / ( √2 - 1) ---------------------> (1)
Substituting (1) in CosA - SinA, we get
SinA / ( √2 - 1) - SinA (take SinA as common factor)
SinA ( 1/( √2 - 1) - 1) -------------> Take LCM
SinA (1 - ( √2 - 1) / ( √2 - 1))
SinA (2 - √2 / ( √2 - 1)) -----------------> Rationalize the denominator
SinA ( (2- √2)( √2 + 1) / ( √2 - 1)( √2 + 1) )
SinA ( (2√2 + 2 - 2 - √2) / 2 - 1)
SinA ( √2 / 1)
= √2 SinA
Hence Proved.
CosA + SinA = CosA√2
SinA = CosA√2 - CosA (Take CosA common factor)
SinA = CosA ( √2 - 1) ----> Root sign is only for "2"
CosA = SinA / ( √2 - 1) ---------------------> (1)
Substituting (1) in CosA - SinA, we get
SinA / ( √2 - 1) - SinA (take SinA as common factor)
SinA ( 1/( √2 - 1) - 1) -------------> Take LCM
SinA (1 - ( √2 - 1) / ( √2 - 1))
SinA (2 - √2 / ( √2 - 1)) -----------------> Rationalize the denominator
SinA ( (2- √2)( √2 + 1) / ( √2 - 1)( √2 + 1) )
SinA ( (2√2 + 2 - 2 - √2) / 2 - 1)
SinA ( √2 / 1)
= √2 SinA
Hence Proved.
Answered by
2
hope my answer helps you
Attachments:
Similar questions