Math, asked by rajkunkulol1089, 4 months ago

sintheta/1-costheta=cosectheta+cottheta​

Answers

Answered by aryan073
3

Given :

  \\ \large \red \bigstar \rm \:  \frac{sin \theta}{1 - cos \theta}  =  cosec \theta + cot \theta

To Prove :

 \\  \large \boxed{ \blue \bigstar \sf{ \frac{sin \theta}{1 - cos \theta}  = cosec \theta + cot \theta}}

Solution:

LHS:

  \\ \bigstar \large \sf \:  \frac{sin \theta}{1 - cos \theta}

 \bf \: \bigstar \: multiplying \: numerator \:  \: and \:  \: denominator \: by \:  \bf \\   \bf (1 + cos \theta)

  \\ \implies \large \sf \:  \frac{sin \theta}{1 - cos \theta}  \times  \frac{1 + cos \theta}{1 + cos \theta}  \\  \\ \\  \implies  \large\sf \:  \frac{sin \theta(1 +cos \theta) }{(1 - cos \theta)(1 + cos \theta)}  \\ \\  \\  \implies  \large\sf \:  \frac{sin \theta(1 + cos \theta)}{1(1 + cos \theta) -cos \theta(1 + cos \theta)}  \\ \\ \\  \implies \sf \:  \frac{sin \theta + sin \theta \times cos \theta}{1 + cos \theta - cos \theta -  {cos}^{2}  \theta}  \\ \\  \\  \implies  \large\sf \:  \frac{sin \theta + sin \theta \times cos \theta}{1 +  \cancel{ cos \theta - cos \theta}  -  {cos }^{2}  \theta } \\  \\ \\  \implies  \large\sf \:   \frac{1 + cos \theta}{sin \theta}  \times  \frac{1}{sin \theta} +  \frac{cos \theta}{sin \theta}  \\  \\ \\ \implies   \large\boxed{\sf{cosec \theta + cot \theta}}

RHS

 \\ \implies \large  \sf \: cosec \theta + cot \theta \:

Hence we can say LHS=RHS

\\ \large \boxed{ \sf{ \red \bigstar \:  \frac{sin \theta}{1 - cos \theta}  = cosec \theta + cot \theta}}

Hence proved

Some related trigonometric values :

 \large\sf{ (1) sec \theta =\dfrac{1}{cos \theta}}

 \large\sf{(2) tan \theta =\dfrac{sin \theta}{cos \theta}}

 \large\sf{(3) cosec \theta =\dfrac{1}{sin \theta}}

\large\sf{(4) cot \theta =\dfrac{1}{tan \theta}}

 \large\sf{(5) cot \theta=\dfrac{cos \theta}{sin \theta}}

Similar questions