sintheta+1-costheta/costheta-1+sintheta=1+sintheta/costheta
Answers
Answered by
0
GIVEN :
The equation is [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex]
TO FIND :
The given equation [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex] is true and check the equality.
SOLUTION :
Given equation is [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex]
Now taking the LHS
Multiply and divide by the denominator's conjugate
By using the algebraic identity :
By using the algebraic identity :
By using the algebraic identity :
By using the Trignometric identity :
= RHS
⇒ LHS = RHS
⇒ [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex]
∴ [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex] is true and the equality is verified.
Similar questions