Math, asked by prince0389, 10 months ago

sintheta+1-costheta/costheta-1+sintheta=1+sintheta/costheta

Answers

Answered by ashishks1912
0

GIVEN :

The equation is [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex]

TO FIND :

The given equation [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex] is true and check the equality.

SOLUTION :

Given equation is [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex]

Now taking the LHS

\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}

=\frac{sin\theta+1-cos\theta}{sin\theta-1+cos\theta}

=\frac{sin\theta+(1-cos\theta)}{sin\theta-(1-cos\theta)}

Multiply and divide by the denominator's conjugate sin\theta+(1-cos\theta)

=\frac{sin\theta+(1-cos\theta)}{sin\theta-(1-cos\theta)}\times \frac{sin\theta+(1-cos\theta)}{sin\theta+(1-cos\theta)}

By using the algebraic identity :

(a+b)(a-b)=a^2-b^2

=\frac{[sin\theta+(1-cos\theta)]^2}{sin^2\theta-(1-cos\theta)^2}

By using the algebraic identity :

(a+b)^2=a^2+2ab+b^2

=\frac{sin^2\theta+2(sin\theta)(1-cos\theta)+(1-cos\theta)^2}{sin^2\theta-(1-cos\theta)^2}

\frac{sin^2\theta+2(sin\theta)(1-cos\theta)+(1^2-2(1)(cos\theta)+(cos\theta)^2)]}{sin^2\theta-(1^2-2(1)(cos\theta)+(cos\theta)^2)}

By using the algebraic identity :

(a-b)^2=a^2-2ab+b^2

=\frac{sin^2\theta+2sin\theta(1)-2sin\theta(cos\theta)+1-2cos\theta+cos^2\theta}{sin^2\theta-(1-2cos\theta+cos^2\theta)}

=\frac{1+2sin\theta-2sin\theta cos\theta+1-2cos\theta}{sin^2\theta-((sin^2\theta+cos^2\theta)-2cos\theta+cos^2\theta)}

By using the Trignometric identity :

sin^2x+cos^2x=1

=\frac{1+2sin\theta-2sin\theta cos\theta+1-2cos\theta}{sin^2\theta-sin^2\theta-cos^2\theta+2cos\theta-cos^2\theta)}

=\frac{2+2sin\theta-2sin\theta cos\theta-2cos\theta}{-2cos^2\theta+2cos\theta}

=\frac{2(1+sin\theta-sin\theta cos\theta-cos\theta)}{2(-cos^2\theta+cos\theta)}

=\frac{1+sin\theta-sin\theta cos\theta-cos\theta}{cos\theta-cos^2\theta}

=\frac{1+sin\theta-sin\theta cos\theta-cos\theta}{cos\theta(1-cos\theta)}

=\frac{(1-cos\theta)+sin\theta(1-cos\theta)}{cos\theta(1-cos\theta)}

=\frac{(1-cos\theta)(1+sin\theta}{cos\theta(1-cos\theta)}

=\frac{1+sin\theta}{cos\theta} = RHS

⇒ LHS = RHS

⇒ [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex]

∴ [tex]\frac{sin\theta+1-cos\theta}{cos\theta-1+sin\theta}=\frac{1+sin\theta}{cos\theta }[/tex] is true and the equality is verified.

Similar questions