Math, asked by varshini1459, 1 year ago

sintheta+costheta=m,sectheta+cosectheta=n, prove n(m2-1)=2m​

Answers

Answered by muskanc918
18

Given-

  \sin \theta  + \cos  \theta = m.....(i) \\ \sec \theta +  cosec \theta = n......(ii)

To prove-

 \implies \: n( {m}^{2}  - 1) = 2m

Proof:-

L. H. S. -

\large\sf{ = n( {m}^{2}  - 1)     }

\large\sf{   = \sec \theta+  cosec \theta \: [{{(\sin  \theta+  \cos \theta })^{2} } - 1]  }

\large\sf{ =  \sec \theta \:  + cosec \theta \: [( { \sin}^{2} \theta+   { \cos}^{2} \theta + 2 \sin \theta \times  \cos \theta) - 1]  }

\large\sf{  =  \sec \theta \:  + cosec \theta \:  ( 1  + 2 \sin \theta \times  \cos \theta) - 1   }

\large\sf{   =    \sec  \theta\:  + cosec \theta \:  ( 1  + 2 \sin \theta \times  \cos  \theta - 1 )   }

\large\sf{    = \sec \theta \:  + cosec \theta \:(2 \sin \theta \times  \cos \theta )  }

\large\sf{ =  2 \sin \theta  \cos \theta  sec \theta + 2 \sin \theta \cos\theta cosec  \theta}

\large\sf{ =  2 \sin \theta \cos \theta \frac{1}{ \cos \theta }  + 2 \cos \theta  \sin \theta \frac{1}{ \sin \theta }     }

\large\sf{ =   2 \sin \theta+ 2 \cos \theta }

\large\sf{  = 2(\sin \theta+  \cos \theta)   }

\large\sf{ =  2m........using\:(i) }

\large\sf{L.H.S</p><p>=R. H. S</p><p>}

HENCE, PROVED.

Similar questions