Math, asked by bhattsumit954, 1 year ago

Sinx+2cosx=1 then prove that 2sinx-cosx=2

Answers

Answered by MaheswariS
7

Given:

sin\,x+2\,cos\,x=1

Squaring on both sides, we get

(sin\,x+2\,cos\,x)^2=1

Using the algebraic identity

\boxed{\bf(a+b)^2=a^2+b^2+2ab}

sin^2x+4cos^2x+4sin\,x\,cos\,x=1

Using

\boxed{\bf\,sin^2\theta+cos^2\theta=1}

sin^2x+4(1-sin^2x)+4sin\,x\,cos\,x=sin^2x+cos^2x

4-4sin^2x+4sin\,x\,cos\,x=cos^2x

4=cos^2x+4sin^2x-4sin\,x\,cos\,x

4=cos^2x+(2sinx)^2-2\,cos\,x(2\,sin\,x)

4=(cosx+2sinx)^2

Taking square root on both sides, we get

2=cosx+2sinx

\implies\boxed{\bf\,cosx+2sinx=2}

Answered by vanshsharma906
6

Answer:

You are most welcome!!

Step-by-step explanation:

Attachments:
Similar questions