Math, asked by abhi178, 1 year ago

sinx=3/4 then find general solution of cotx ?

Answers

Answered by BendingReality
32

Answer:

x =  n π + cot⁻¹ ( √ 7 / 3 )

Step-by-step explanation:

Given :

sin x = 3  /4

= > cos x = √ ( 1 - sin² x )

= > cos x = √ ( 1 - 9 / 16 )

= > cos x = √ 7 / 4

Now cot x = cos x / sin x

cot x = ( √ 7 / 4 ) / ( 3 / 4 )

= > cot x = √ 7 / 3

cot x = 1 / tan x = √ 7 / 3

= > tan x = 3 / √ 7

Let say :

tan α = 3 / √ 7

= > α = tan⁻¹ ( 3 / √ 7 )

We know if :

tan Ф = tan α

= > Ф = n π + α

= > x = n π + tan⁻¹ ( 3 / √ 7 )

In term of cot as we know :

tan⁻¹ x = cot⁻¹ ( 1 / x )

= > x =  n π + cot⁻¹ ( √ 7 / 3 )

Hence we get required answer.

Attachments:
Answered by asritadevi2emailcom
6

‌‍,

.

x = n\pi +  {cot}^{ - 1} ( \sqrt{7}  \div 3 \\  \\  \\ sin \: x = 3 \div 4 \\  \\  = cos = x \sqrt{} (1 -  {sin}^{2} x) \\  \\  = cosx =  \sqrt{} (1 - 9 \div 16 ) \\  \\  = cos =  \sqrt{} 7 \div 4 \\  \\  \\ cot \: x = cos \: x \div  \: sin \: x \\  \\ cot \: x = ( \sqrt{} 7 \div 4) \div (3 \div 4) \\  \\  = cot \: x =  \sqrt{} 7 \div 3 \\  \\   \\ cot \: x = 1 \div tan \: x =  \sqrt{} 7 \div 3 \\ \tan \: x = 3 \div  \sqrt{} 7 \\  \\ let \:  \: see \\  \\ tan \:  \: a \:  = 3 \div  \sqrt{} 7 \\  \\  = a \:  =  \:  {tan}^{ - 1} (3 \div  \sqrt{} 7) \\  \\ wee \:  \: know \:  \: if \\  \\ tan \: 0 = 3  = tan \:  \: a \\  = 0 = n\pi + a \\  \\  = x = 2\pi  \:  \:  {tan}^{ - 1} (3 \div  \sqrt{} 7) \\  \\  \: in \: term \: of \: cot \: as \: we \: know \:   \\  \\  \\   {tan}^{ - 1} x =  {cot}^{ - 1} (1 \div  x) \\  = x = n\pi +  \:  {cot}^{ - 1} ( \sqrt{} 7 \div 3)

Similar questions