Sinx = Cos2x, then the value of Cos2x(1+Cos2x) will be
Answers
Answer:
okkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Step-by-step explanation:
okkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Sinx = Cos2x, then the value of Cos2x(1+Cos2x) will be
GIVEN:
Given, sinx=cos 2 x
Given, sinx=cos 2 xThus sinx=1−sin 2 x
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos 2 x(1+cos 2 x)
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos 2 x(1+cos 2 x)⇒sinx(1+sinx)
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos 2 x(1+cos 2 x)⇒sinx(1+sinx)⇒sinx+sin 2 x
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos 2 x(1+cos 2 x)⇒sinx(1+sinx)⇒sinx+sin 2 xFrom the equation (1), we have
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos 2 x(1+cos 2 x)⇒sinx(1+sinx)⇒sinx+sin 2 xFrom the equation (1), we havesinx+sin 2
Given, sinx=cos 2 xThus sinx=1−sin 2 x⇒sin 2 x+sinx=1 ....(1)We need to find value of cos 2 x(1+cos 2 x)⇒sinx(1+sinx)⇒sinx+sin 2 xFrom the equation (1), we havesinx+sin 2 x=1
Option B is correct.