Math, asked by Shrii76, 1 year ago

|sinx • cosx| +  \sqrt{ { \tan(x) }^{2} { \cot(x) }^{2} + 2 \tan(x \cot(x) ) } = \sqrt{3}
find the number of real solutions of x ​

Answers

Answered by Brainlyconquerer
32

Answer:

No solution

Step-by-step explanation:

Given:

|sinx • cosx| +  \sqrt{ { \tan(x) }^{2} { \cot(x) }^{2} + 2 \tan(x \cot(x) ) } = \sqrt{3}

Solve as follows:

Multiply and divide by 2 in first term

 \frac{1}{2}  \times  | 2\sin(x) \times  \cos(x)  |  +  \sqrt{ { \tan }^{2} x +  { \cot }^{2} x + 2 }   =  \sqrt{3}

Now as Tanx = 1/cotx

As Sin(2x) = 2sin(x)×cos(x)

 \frac{1}{2}  | \sin(2x) |  +  \sqrt{ { \tan}^{2} x +  {  \cot  }^{2} x + 2 \tan(x) \cot(x)  }  =  \sqrt{3}  \\  \\  \frac{1}{2}  | \sin(2x) |  +  \sqrt{ {( \tan(x) +  \cot(x) ) }^{2} }  =  \sqrt{3}  \\  \\

Now, Quantity under square root is always positive so it will opens with +ve value

 \frac{1}{2}  | \sin(2x) |  +  | \tan(x) +  \cot(x)  |  =  \sqrt{3}  \\  \\  \frac{1}{2}  | \sin(2x) |  +  | \tan(x) +  \frac{1}{   \tan(x)  ) }  | = \sqrt{3} \\  \\  \frac{1}{2}  | \sin(2x) |  +   | \frac{ { \tan }^{2}x + 1 }{ \tan(x) } |  =  \sqrt{3}  \\  \\

Now use the formula,

 \sin(2x)  =  \frac{2 \tan(x) }{1 +  { \tan }^{2}x }

Putting in

 \frac{1}{2}  | \frac{2  \tan(x)  }{1 +  { \tan }^{2} x} |  +    | \frac{ { \tan }^{2}x + 1 }{ \tan(x) } |  =  \sqrt{3}  \\  \\

Now replace    | \dfrac{ { \tan }^{2}x + 1 }{ \tan(x) } |   \\  \\ by t

Equation becomes

 \frac{1}{2}  | \frac{2  \tan(x)  }{1 +  { \tan }^{2} x} |  +    | \frac{ { \tan }^{2}x + 1 }{ \tan(x) } |  =  \sqrt{3}  \\  \\   t +  \frac{1}{t}  =  \sqrt{3}  \\  \\  \frac{ {t}^{2} + 1 }{t}  =  \sqrt{3}  \\  \\  {t}^{2}  + 1 =  \sqrt{3} t \\  \\  {t}^{2}  -  \sqrt{3} t + 1 = 0

Now here we get quadratic equation in t

To find number of solution first check the existence of solutions

Check Discriminate of the equation

Using d =  \frac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}

Putting in the values

d =  \frac{  + \sqrt{3} \pm \sqrt{3  - 4 \times 1 \times 1}  }{2}  \\  \\ d =   \frac{  \sqrt{3}  \pm \sqrt{ - 1}  }{2}

The quantity under squareroot is negative so we get D <0

Hence no real solutions exist.

Answer No solution

\boxed{\underline{\underline{\bold{\mathsf{Formula\:Used\:here\:are:}}}}}:—

•Sin(2x) = 2sin(x)×cos(x)

 \sin(2x)  =  \frac{2 \tan(x) }{1 +  { \tan }^{2}x }

d =  \frac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}


krish00776: hii
Answered by Anonymous
30

Hey there

refer to attachment

Attachments:
Similar questions