sinx. sin 2x. sin 3x differentiation with respect to x
Answers
Answered by
0
Answer:
Let I=∫sinx.sin2x.sin3xdx
=
2
1
∫2sinx.sin2x.sin3xdx
=
2
1
∫sinx.(2sin2x.sin3x)dx
We know that [2sinA.sinB=cos(A−B)−cos(A+B)]
So, =
2
1
∫sinx.(cosx−cos5x)dx
=
2×2
1
∫2sinx.cosxdx−
2×2
1
∫2sinx.cos5xdx
=
4
1
∫sin2xdx−
4
1
∫(sin6x−sin4x)dx
= −
8
cos2x
+
24
cos6x
−
16
cos4x
+c
Similar questions