sinx + siny =a and cosx +cost =b then prove that sin(x+y) =2ab/a^2+b^2
Answers
Answered by
0
We, know that sin(x+y) = sinxcosy + sinycosx
First, multiply the 2 equations,
ab = (sinx + siny)(cosx + cosy)
= sinxcosx + (sinxcosy + sinycosx) + sinycosy
= ½sin(2x) + sin(x+y) + ½sin(2y)
{ since, sin(2x) = 2 sinxcosx }
= sin(x+y) + ½[sin(2x) + sin(2y)]
{ since , sinx + siny = 2sin[(x+y}/2]cos[(x-y)/2] }
= sin(x+y) + sin(x+y)cos(x-y)
= sin(x+y) [1 + cos(x-y)] ---------> 1
a² = (sinx + siny)² = sin²x + 2sinxsiny + sin²y
b² = (cosx + cosy)² = cos²x + 2cosxcosy + cos²y
a² + b² = 2 + 2 cos(x-y)
= 2 [1 + cos(x-y)] ----------> 2
From (1) and (2)
sin(x+y) = 2ab/(a² + b²)
Hence proved.
Similar questions