Math, asked by nbbarman140, 8 months ago

sinx+siny=a and cosx-cosy=b then tan(x-y)/2=​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{sin(x)+sin(y)=a\,\,\,\,and\,\,\,\,cos(x)-cos(y)=b}

Now,

\sf{sin(x)+sin(y)=a}

\sf{\implies\,2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg)=a\,\,\,\,....(1)}

Also,

\sf{cos(x)-cos(y)=b}

\sf{\implies\,-2sin\bigg(\dfrac{x+y}{2}\bigg)sin\bigg(\dfrac{x-y}{2}\bigg)=b\,\,\,\,....(2)}

Divide (1) by (2),

\sf{\implies\,\dfrac{2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg)}{-2sin\bigg(\dfrac{x+y}{2}\bigg)sin\bigg(\dfrac{x-y}{2}\bigg)}=\dfrac{a}{b}}

\sf{\implies\,-\dfrac{cos\bigg(\dfrac{x-y}{2}\bigg)}{sin\bigg(\dfrac{x-y}{2}\bigg)}=\dfrac{a}{b}}

\sf{\implies\,-cot\bigg(\dfrac{x-y}{2}\bigg)=\dfrac{a}{b}}

\sf{\implies\,cot\bigg(\dfrac{x-y}{2}\bigg)=-\dfrac{a}{b}}

\sf{\implies\,tan\bigg(\dfrac{x-y}{2}\bigg)=-\dfrac{b}{a}}

Answered by ajr111
4

Answer:

\mathrm{\dfrac{-b}{a}}

Step-by-step explanation:

Given :

\bullet \ \mathrm{sinx + siny = a}

\bullet \ \mathrm{cosx - cosy = b}

To find :

\mathrm{tan\bigg(\dfrac{x-y}{2}\bigg)}

Solution :

We know that,

\begin{gathered}\boxed{\begin{aligned} \mathrm { \bullet \ sinC + sinD} = & \mathrm{2sin\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)} \\\frac{\qquad \qquad \qquad \qquad }{} & \frac{\qquad \qquad \qquad \qquad\qquad\qquad }{} \\ \mathrm { \bullet \ cosC - cosD} = & \mathrm{-2sin\bigg(\dfrac{C+D}{2}\bigg)sin\bigg(\dfrac{C-D}{2}\bigg)} \end{aligned}} \end{gathered}

As here,

\longmapsto \mathrm{sinx + siny = a} \ \text{and} \ \mathrm{cosx - cosy = b}

\implies \mathrm {sinx + siny = 2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg) = a}\ \ \ ---- [1]

\implies \mathrm {cosx - cosy = -2sin\bigg(\dfrac{x+y}{2}\bigg)sin\bigg(\dfrac{x-y}{2}\bigg) = b} \ \ \ - - - - [2]

Dividing 1 by 2, we get,

\implies \mathrm{\dfrac{2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg)}{-2sin\bigg(\dfrac{x+y}{2}\bigg)sin\bigg(\dfrac{x-y}{2}\bigg)} = \dfrac{a}{b}}

\implies \mathrm{\dfrac{\not2\bcancel{sin\bigg(\dfrac{x+y}{2}\bigg)}{cos\bigg(\dfrac{x-y}{2}\bigg)}}{\not2\bcancel{sin\bigg(\dfrac{x+y}{2}\bigg)}sin\bigg(\dfrac{x-y}{2}\bigg)} = \dfrac{-a}{b}}

\implies \mathrm{cot\bigg(\dfrac{x-y}{2}\bigg) = \dfrac{-a}{b}}

We know that,

\boxed{\mathrm{cotx = \dfrac{1}{tanx}}}

So,

\therefore \underline{\boxed{\mathbf{tan\bigg(\dfrac{x-y}{2}\bigg) = \dfrac{-b}{a}}}}

Hope it helps!!

Similar questions