Math, asked by koppuravuri823, 8 months ago

sinx+siny=a;cosx+cosy=b then tan(x+y÷2)=?;sin(x-y÷2)=?​

Answers

Answered by rajeevr06
1

Answer:

i) sinx+sing=a. & cosx+cosy=b then

 \frac{sinx + siny}{cosx + cosy}  =  \frac{a}{b}

 \frac{2sin( \frac{x + y}{2} )cos( \frac{x - y}{2}) }{2cos( \frac{x + y}{2})cos( \frac{x - y}{2} ) }  =  \frac{a}{b}  =  \tan( \frac{x + y}{2} )

ii)

(sinx + siny) {}^{2}  + (cosx + cosy) {}^{2}  =  {a}^{2}  +  {b}^{2}

2 + 2(cosx \: cosy + sinx \: siny) = a {}^{2}  +  {b}^{2}

2cos(x - y) =  {a}^{2}  +  {b}^{2}  - 2

cos(x - y) =  \frac{ {a}^{2} +  {b}^{2}  - 2 }{2}

1 - 2 {sin}^{2} ( \frac{x - y}{2} ) = \frac{ {a}^{2} +  {b}^{2}  - 2 }{2}

2 {sin}^{2} ( \frac{x - y}{2} ) = 1 - \frac{ {a}^{2} +  {b}^{2}  - 2 }{2}  =  \frac{2 -  {a}^{2} -  {b}^{2}   + 2}{2}  =  \frac{4 -  {a}^{2}  -  {b}^{2} }{2}

 {sin}^{2} ( \frac{x - y}{2})  = \frac{4 -  {a}^{2}  -  {b}^{2} }{4}

 \sin( \frac{x - y}{2} )  =  \sqrt{ \:\frac{4 -  {a}^{2}  -  {b}^{2} }{4} }  =  \frac{1}{2}  \sqrt{4 -  {a}^{2} -  {b}^{2}  }

Ans

Similar questions