siny=xsin(a+y) then prove dy/dx= sina/(1-2xcosa+a^2)
Answers
Given . Expand this equation,
Now differentiate the equation with respect to ,
\\
.
The proof is complete.
Answer:
Given: sin y = x sin (a+y)
To show: dy/dx = sina/(1 - 2x cos a + x²)
First we simplify the given statement,
sin y = x (sin a . cos y + cos a . sin y)
sin y = x sin a . cos y + x cos a. sin y
sin y - x sin y . cos a = x cos y. sin a
sin y (1- x cos a) = x cos y. sin a
sin y = x cos y. sin a / (1- x cos a)
sin y / cos y = x.sin a / (1 - x cos a)
tan y = x.sin a / (1 - x cos a)
Now find derivate of both sides,
[tex]\frac{1+x^2\,cos^2\,a-2x\,cos\,a-x^2\,sin^2\,a}{(1-x\,cos\,a)^2}\:\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{sin\,a}{(1-x\,cos\,a)^2} [/tex]
[tex]\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{sin\,a}{(1-x\,cos\,a)^2}\times\frac{(1-x\,cos\,a)^2}{1-2x\,cos\,a+x^2(cos^2\,a+\,sin^2\,a)} [/tex]
Therefore, dy/dx = sina/(1 - 2x cos a + x²)
Hence Proved.