Math, asked by adarshkanth80, 4 days ago

sir Ch exponent
sir please find fast​

Attachments:

Answers

Answered by mathdude500
12

Given Question :-

Simplify :

\rm :\longmapsto\:\dfrac{ {6}^{2n + 3}  -  {36}^{n + 2} }{ {\bigg[ {(216)}^{n + 1} \bigg]}^{\dfrac{2}{3} } }

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{ {6}^{n + 3}  -  {36}^{n + 2} }{ {\bigg[ {(216)}^{n + 1} \bigg]}^{\dfrac{2}{3} } }

can be rewritten as

\rm \:  =  \: \dfrac{ {6}^{2n + 3}  -  {(6 \times 6)}^{n + 2} }{ {\bigg[ {(6 \times 6 \times 6)}^{n + 1} \bigg]}^{\dfrac{2}{3} } }

\rm \:  =  \: \dfrac{ {6}^{2n + 3}  -  {( {6}^{2})}^{n + 2} }{ {\bigg[ {( {6}^{3} )}^{n + 1} \bigg]}^{\dfrac{2}{3} } }

We know,

 \red{\boxed{ \tt{ \:  {( {a}^{m} )}^{n} \:  =  \:  {a}^{mn}  \: }}}

So, using this, we get

\rm \:  =  \: \dfrac{ {6}^{2n + 3}  -  {6}^{2(n + 2)} }{ {\bigg[ {6}^{3(n + 1)} \bigg]}^{\dfrac{2}{3} } }

\rm \:  =  \: \dfrac{ {6}^{2n + 3}  -  {6}^{2(n + 2)} }{ {{6}^{2(n + 1)}} }

\rm \:  =  \: \dfrac{ {6}^{2n + 3}  -  {6}^{2n + 4} }{ {{6}^{2n +2}} }

\rm \:  =  \: \dfrac{ {6}^{2n + 3}}{ {6}^{2n + 2} }  - \dfrac{ {6}^{2n + 4} }{ {6}^{2n + 2} }

We know,

\begin{gathered}\:{\underline{\boxed{\bf{\blue{a^m\div{a^n}\:=\:a^{m\: - \:n}\:}}}}} \\ \end{gathered}

So, using this, we get

\rm \:  =  \:  {6}^{(2n + 3) - (2n + 2)} -  {6}^{(2n + 4) - (2n + 2)}

\rm \:  =  \:  {6}^{2n + 3 - 2n  - 2} -  {6}^{2n + 4 - 2n - 2}

\rm \:  =  \: 6 -  {6}^{2}

\rm \:  =  \: 6 - 36

\rm \:  =  \:  - 30

Hence,

\rm \implies\:\boxed{ \tt{ \: \dfrac{ {6}^{2n + 3}  -  {36}^{n + 2} }{ {\bigg[ {(216)}^{n + 1} \bigg]}^{\dfrac{2}{3} } }  =  - 30 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\color{red}{(a^0)\:=\:1\:}}}}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
48

Question:-

 \sf  \frac{6 {}^{2n + 3} - (36) {}^{n + 2}  }{[(216) {}^{n + 1} ] {}^{ \frac{2}{3} } }

  • As we know that, 6³ = 216.

 \longmapsto \sf  \frac{6 {}^{2n + 3}  - (36) {}^{n + 2} }{[6 {}^{n + 1}] {}^{2} }

 \longmapsto \sf \frac{6 {}^{2n + 3} }{6 {}^{2n + 2} }   -   \frac{6 {}^{2n + 4} }{6 {}^{2n + 2}  }

 \longmapsto \sf 6 - 36 =  - 30

Answer:-

 \sf \huge \mathfrak   \green{ =  - 30}

Similar questions