Math, asked by krishna2812, 1 year ago

slove this problem please please please please please please please

Attachments:

Answers

Answered by Anonymous
11

Solution :-

Given :-

\left( \dfrac{-3}{2}\right)^6 \times \left(\dfrac{4}{9}\right)^3 = \left(\dfrac{1}{2}\right)^{3x}

Now by simplification of above :-

\implies \left( \dfrac{-3}{2}\right)^6 \times \left(\dfrac{2^2}{3^2}\right)^3 = \left(\dfrac{1}{2}\right)^{3x}

 \implies \left( \dfrac{-3}{2}\right)^6 \times \left(\left(\dfrac{2}{3}\right)^2\right)^3 = \left(\dfrac{1}{2}\right)^{3x}

 \implies \left( \dfrac{-3}{2}\right)^6 \times \left(\dfrac{2}{3}\right)^6 = \left(\dfrac{1}{2}\right)^{3x}

 \implies \left( \dfrac{9^3}{2^6}\right) \times \left(\dfrac{2^6}{9^3}\right) = \left(\dfrac{1}{2}\right)^{3x}

 \implies  \left( \dfrac{\cancel{9^3}}{\cancel{2^6}}\right) \times \left(\dfrac{\cancel{2^6}}{\cancel{9^3}}\right) = \left(\dfrac{1}{2}\right)^{3x}

 \implies 1 = \left(\dfrac{1}{2}\right)^{3x}

◾Now we will consider \left(\frac{1}{2}\right)^{0} = 1 .

▪️Then :-

 \implies \left(\dfrac{1}{2}\right)^{0} = \left(\dfrac{1}{2}\right)^{3x}

As bases are same :-

 \implies 0 = 3x

 \implies x = 0

So value of x = 0


Anonymous: "_"....
Similar questions