slove using identities (x^2+5)(x^2-10)
Answers
Answered by
0
нєℓℓσ мαтє
Let x² = y
( x² + 5 )( x² - 10 )
( y + 5 )[ y + ( - 10 ) ]
Now, this quation is similar to ( x + a )( x + b ) =
x² + ( a + b )x + ab
= y² + [ 5 + ( - 10 ) ]y + ( 5 )( - 10 )
= y² - 5y - 50
We get, ( x² )² - 5( x² ) - 50
x⁴ - 5x² - 50
Verification
= y² - 5y - 50
Split the middle term
y² - 10y + 5y - 50
y ( y - 10 ) + 5 ( y - 10 )
( y + 5 )( y - 10 )
Now, replace y with x²
( x² + 5 )( x² - 10 )
Hope it helps
Let x² = y
( x² + 5 )( x² - 10 )
( y + 5 )[ y + ( - 10 ) ]
Now, this quation is similar to ( x + a )( x + b ) =
x² + ( a + b )x + ab
= y² + [ 5 + ( - 10 ) ]y + ( 5 )( - 10 )
= y² - 5y - 50
We get, ( x² )² - 5( x² ) - 50
x⁴ - 5x² - 50
Verification
= y² - 5y - 50
Split the middle term
y² - 10y + 5y - 50
y ( y - 10 ) + 5 ( y - 10 )
( y + 5 )( y - 10 )
Now, replace y with x²
( x² + 5 )( x² - 10 )
Hope it helps
Similar questions