Math, asked by antonystephen1406, 5 hours ago

.Sn
of AP is 3n2 + 4n then 8th term is

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

Sum of n terms of an AP series is given by

\rm :\longmapsto\:S_n \:  =  \:  {3n}^{2}  + 4n

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So,

\rm :\longmapsto\:\dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)  = n(3n + 4)

\rm :\longmapsto\:2a + (n - 1)d  = 6n + 8

\rm :\longmapsto\:2a + nd - d  = 6n + 8

\rm :\longmapsto\:nd  + (2a- d)  = 6n + 8

So, On comparing, we get

\bf\implies \:d = 6

Also,

\rm :\longmapsto\:2a - d = 8

\rm :\longmapsto\:2a - 6= 8

\rm :\longmapsto\:2a= 8 + 6

\rm :\longmapsto\:2a= 14

\bf\implies \:a = 7

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

 \purple{\rm :\longmapsto\:a_8}

 \rm \:  =  \: a + 7d

 \rm \:  =  \: 7 + 7 \times 6

 \rm \:  =  \: 7 + 42

 \rm \:  =  \:49

Thus,

 \purple{\rm :\longmapsto\:\boxed{ \:  \:  \:  \:  \:  \large{\tt{ a_8 = 49}} \:  \:  \:  \:  \:  \: }}

Similar questions