Math, asked by jyothim0456, 7 hours ago

Sneha borrowed a sum of ₹1,20,000 from a bank for 2 years at the rate of10% per annum, compounded annually. What is the compound interest she must pay? 
A) ₹25200
B) ₹24000
C) ₹42000
D) ₹145200​

Answers

Answered by TYKE
6

Question :

Sneha borrowed a sum of ₹1,20,000 from a bank for 2 years at the rate of 10% per annum, compounded annually. What is the compound interest she must pay? 

Formula Used :

 \sf \small \star  \: A = P(1 +  \frac{r}{100} )^{n}

Here,

  • "A" refers Amount

  • "P" refers Principal

  • "r" refers rate of interest

  • "n" refers time

 \sf \small \star \:  C.I = A - P

Here,

  • "C.I" means Compound Interest

  • "A" refers Amount

  • "P" refers Principal

Given Data :

  • Principal → ₹ 120000

  • Rate → 10 % p.a. compounded annually

  • Time → 2 years

Solution :

First we need to get the amount and then get C.I by subtracting principal from amount

 \sf \small \dashrightarrow \: A = P(1 +  \frac{r}{100}) ^{n}

Putting the values we get

 \sf \small \dashrightarrow \: A = 120000(1 +  \frac{10}{100} )^{2}

  \sf \small \dashrightarrow \: A = 120000 (1 +  \frac{ \cancel{10}}{ \cancel{100}})^{2}

  \sf \small \dashrightarrow \: A =120000  {(1 + \frac{1}{10}  )}^{2}

  \sf \small \dashrightarrow \: A = 120000 \times  { (\frac{11}{10} )}^{2}

  \sf \small \dashrightarrow \: A = 120000 \times  \frac{121}{100}

  \sf \small \dashrightarrow \: A = 1200 \cancel{00} \times  \frac{121}{1 \cancel{00}}

  \sf \small \dashrightarrow \: A = 1200 \times 121

  \sf \small \dashrightarrow \: A = 145200

So the amount is ₹ 145200

Now, To get the C.I from the amount and the principal

C.I = A - P

C.I. = ₹ 145200 - ₹ 120000

C.I. = ₹ 25200

Hence, the Compound Interest after 2 years is ₹ 25200

So the answer is option A i.e. 25200

Answered by Anonymous
102

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

  • ➳ Principle = Rs.120000
  • ➳ Time = 2 years
  • ➳ Rate of Interest = 10%

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To Find :}}}}}}\end{gathered}

  • ➳ Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Concept:}}}}}}\end{gathered}

➳ Here the Concept of Compound Interest and Amount has been used . We see we are given the details of the exchange that is Principal, Time and Rate .Here the Principle is Rs.120000, the time is 2 years and the rate of Interest is 10% p.a. So firstly we will find the amount and after finding amount we will find the compound interest.!!

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Using Formulas :}}}}}}\end{gathered}

\quad{\dag{\underline{\boxed{\sf{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\dag{\underline{\boxed{\sf{C.I = A- P }}}}

Where

  • ➽ A = Amount
  • ➽ P = Principle
  • ➽ R = Rate of Interest
  • ➽ T = Time Period
  • ➽ C.I = Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

{\bigstar \:{\underline{\underline{\pmb{\frak{{Firstly, calculating\: the \: Amount.. }}}}}}}

\quad {: \longmapsto{\sf{Amount = {P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

\quad {: \longmapsto{\sf{Amount = {120000{\bigg(1 + \dfrac{10}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg(\dfrac{(1 \times 100) + 10}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg(\dfrac{100 + 10}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg(\dfrac{110}{100}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg( \cancel{\dfrac{110}{100}}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg(\dfrac{55}{50}{\bigg)}^{2}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg( \dfrac{55}{50} \times \dfrac{55}{50}{\bigg)}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg( \dfrac{3025}{2500}{\bigg)}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg( \cancel{\dfrac{3025}{2500}}{\bigg)}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000{\bigg( \dfrac{121}{100}{\bigg)}}}}}}

\quad {: \longmapsto{\sf{Amount = {120000 \times  \dfrac{121}{100}}}}}

\quad {: \longmapsto{\sf{Amount = {\cancel{120000}\times  \dfrac{121}{\cancel{100}}}}}}

\quad {: \longmapsto{\sf{Amount = {1200  \times 121}}}}

\quad {: \longmapsto{\sf{Amount = {Rs.145200}}}}

\quad\dag{\underline{\boxed{\tt{\blue{Amount}={\purple{Rs.145200}}}}}}

  • Hence, The Amount is Rs.145200.

\begin{gathered}\end{gathered}

{\bigstar{\underline{\underline{\pmb{\frak{Now,Finding \: the \: Compound \: Interest}}}}}}

\quad{: \longmapsto{\sf{Compound \: Interest = {Amount - Principle }}}}

  • Substituting the values

\quad{: \longmapsto{\sf{Compound \: Interest = {145200 - 120000}}}}

\quad{: \longmapsto{\sf{Compound \: Interest = {Rs.25200}}}}

\quad\dag{\underline{\boxed{\tt{\blue{Compound \: Interest} = \purple{Rs.25200}}}}}

  • Hence,The Compound Interest is Rs.25200..
  • So,The option A) ₹25200 is the correct answer.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Learn More :}}}}}}\end{gathered}

\quad\odot{\underline{\boxed{\rm{\green{Amount = Principle + Interest}}}}}

\quad\odot{\underline{\boxed{\rm{\green{ P=Amount - Interest }}}}}

\quad\odot{\underline{\boxed{\rm{\green{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\quad\odot{\underline{\boxed{\rm{\green{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\quad\odot{\underline{\boxed{\rm{\green{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions