Math, asked by student8116, 11 months ago

sol it__________________fnds@77
​ ​
​ ​

Attachments:

Answers

Answered by Punjabikudi4
11

Answer

Hope it will help you

Attachments:
Answered by Anonymous
18

Given :

  • Radius of circle = 12 cm
  • Angle between radius = 120°
  • π = 3.14
  • √3 = 1.73

To Find :

  • Area of corresponding segment of the circle

Solution :

 \boxed{\boxed {\bf \blue{Area \: of \: segment = \pi {r}^{2}   \frac{ \theta}{360} - \frac{1}{2}   \sin \theta {r}^{2}  }}} \\  \\  \implies \sf \pi \times  {(12)}^{2}  \times  \frac{120}{360}  -  \frac{1}{2}  \sin120 \times  {(12)}^{2}  \\  \\ \implies \sf\pi \times  \cancel{144} \times  \frac{1}{ \cancel{3}}  -  \frac{1}{ \cancel{2}}  \times  \frac{ \sqrt{3} }{ \cancel{2}}  \times  \cancel{144} \\  \\ \implies \sf48\pi  - 36 \sqrt{3}  \\  \\\implies \sf48 \times 3.14 - 36 \times 1.73 \\  \\  \implies \sf150.72 - 62.28 \\  \\ \implies \sf88.44 \:  {cm}^{2}

 \large \boxed{ \bf \green{Area \:  of \:   segment = 88.44 \:  {cm}^{2} }}

Similar questions