Math, asked by adhtithyan10, 1 year ago

Solid right circular cone of diameter 14 cm and height 8 cm is melted to form a hollow sphere. If the external diameter of the sphere is 10 cm find the internal diameter.

Answers

Answered by siddhartharao77
13

Answer:

6 cm

Step-by-step explanation:

Given:

Diameter of cone d = 14 cm.

Then, radius = d/2 = 7 cm.

height = 8 cm.

(i) Volume of cone:

= (1/3) πr²h

= (1/3) * π * (7)² * 8

= (392/3)π cm³

(ii)

Given, External diameter of the sphere = 10 cm.

Then, external diameter of the sphere R = 5 cm.

Volume of the hollow sphere:

= (4/3)π[R³ - r³]

= (4/3)π[5³ - r³]

= (4/3)π[125 - r³]

Now,

Volume of the hollow sphere = Volume of the cone

⇒ (4/3)π[125 - r³] = (392/3)π

⇒ (4)[125 - r³) = 392

⇒ 125 - r³ = 98

⇒ r³ = 27

⇒ r = 3

Therefore, Internal diameter of the sphere = 2r = 6 cm.

Hope it helps!

Answered by Siddharta7
6

Diameter of cone=14 cm

so, Radius of cone= 7cm

     Height of cone= 8cm

     ∴ Volume of cone= 1/3*pi*r^2*h

                                 =1/3*pi*49*8 cm^3

In Sphere, External Radius R=5cm

         Let, Internal Radius = r  

   Volume of Sphere = External Volume- Internal Volume

                                 = 4/3*pi*R^3-4/3*pi*r^3

                                 =4/3*pi[R^3-r^3]

                                 =4/3*pi[5^3-r^3]

But During Conversion Volume Remains Same

    So, Volume of Sphere=Volume of Cone

           4/3*pi[125-r^3]= 1/3*pi*49*8

           4[125-r^3]=49*8

             [125-r^3]=49*2

              r^3=125-98

              r^3=27

              so, r =3 cm

          Internal Radius= 3cm

   So, Internal Diameter=3*2= 6cm

Similar questions