Math, asked by mdismailprnice, 6 months ago

Solution: 10.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)​

Answers

Answered by pulakmath007
44

SOLUTION :

GIVEN

 \displaystyle \sf{ 2\log \bigg( \frac{x + y}{4}  \bigg)  =  \log x +  \log y}

TO DETERMINE

 \displaystyle \sf{ \: } The  \: value \:  of  \:  \bigg( \frac{x}{y}  +  \frac{y}{x}  \bigg)

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{ \: }  1. \:  \: \log  {x}^{m}  =  m \log x

 \displaystyle \sf{ \: }  2. \:  \: \log  {(xy)} =  \log x +  \log y

CALCULATION

 \displaystyle \sf{ 2\log \bigg( \frac{x + y}{4}  \bigg)  =  \log x +  \log y}

 \implies \displaystyle \sf{ \log {\bigg( \frac{x + y}{4}  \bigg)}^{2}  =  \log (x y)}

 \implies \displaystyle \sf{  {\bigg( \frac{x + y}{4}  \bigg)}^{2}  =   x y}

 \implies \displaystyle \sf{  ( {x + y)}^{2}  = 16  x y}

 \implies \displaystyle \sf{   {x}^{2}  + 2xy +  {y}^{2}   = 16  x y}

 \implies \displaystyle \sf{   {x}^{2} +  {y}^{2}   = 14  x y}

Dividing both sides by xy we get

 \implies \displaystyle \sf{   \frac{ {x}^{2} }{xy}  +  \frac{ {y}^{2} }{xy}  = 14}

 \implies \displaystyle \sf{ \: }   \frac{x}{y}  +  \frac{y}{x}  = 14

RESULT

 \boxed {\displaystyle \sf{ \: }   \:  \:  \frac{x}{y}  +  \frac{y}{x}  = 14 \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

IF 1/1!9!+1/3!7!+1/5!5!+1/7!3!+1/9!=2^n /10!

then n=?

https://brainly.in/question/20427754

Similar questions