Math, asked by pmi11barman, 1 year ago

Solution of 3y/2-5x/3=-2 and y/3+x/3=13/16 by elimination method

Answers

Answered by isafsafiya
6

Answer:

x = 159 / 304

y = 97 / 66

Given:-

 \frac{3y}{2}  -  \frac{5x}{3}  =  - 2 \:  \:  \:  \:  \:  ...........(1)\\  \\  \frac{y}{3}  +  \frac{x}{3}  =  \frac{13}{16} \:  \:  \:  \:  \:  \:  \:  \:  \:  .............(2) \\   \\

to find:-

  • value of x and y

Solution:-

\frac{3y}{2}  -  \frac{5x}{3}  =  - 2 \:  \:  \:  \:  \:  \\  \\   \frac{10x - 9y}{6} =  - 2 \\  \\ 10x - 9y =  - 12 \:  \:  \:  \:  \:  \: ..............(1) \\  \\   \frac{y}{3}  +  \frac{x}{3}  =  \frac{13}{16} \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\  \frac{3x + 3y}{9}  =  \frac{13}{16}   \\   \\  \frac{3(x + y)}{9} =  \frac{13}{16}  \\   \\ \frac{16(x + y)}{3}  = 13 \\ 16(x + y) = 13 \times 9 \\  \\ 16x + 16y = 39 \: ................(2) \\  \\ now \: muliply \: equation \: 1 \: by \: 16 \\  \\ 10x - 9y =  - 12 \\  \\ 160x - 144y =  - 192 \:  ..............(3) \\  \\ multiply \: equation \:  \: 2 \:  \: by \: 9 \\  \\ 16x + 16y = 39 \\  \\ 144x + 144y = 351 \: ..........(4) \\  \\ now \:  \: add \: the \: equation \: 3 \:  \: and \:  \: 4 \\  \\ \:  \:  \:  160x - 144y =  - 192  \\  + 144x + 144y = 351 \\  -  -  -  -  -  -  -  -  -  -  -  -  \\  \:  \:  \: 304x \:  \:  = 159 \\  \\  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{159}{304}  \\  \\  \:  \:  \:  \:  \:  \:  \: put \:  \: x = \frac{159}{304}  \: in \: equation \: 1 \\  \\ 10x - 9y =  - 12 \\  \\ 10 \times  \frac{159}{304}  - 9y =  - 12 \\  \\  \frac{1590}{304}  - 9y =  - 12 \\  \\ 1590 - 2736y =  - 12 \times 304 \\  \\  - 2376y =  - 3648 - 1590 \\  \\  - 2376y =  - 5238 \\  \\  \:  \:  \:  \: y =  \frac{ - 5238}{ - 2376}  \\  \\ y =  \frac{2619}{1188}  =  \frac{873}{396}  =  \frac{291}{132}  =  \frac{97}{66}

Answered by lublana
16

x=\frac{543}{304},y=\frac{99}{152}

Step-by-step explanation:

\frac{3y}{2}-\frac{5x}{3}=-2

\frac{9y-10x}{6}=-2

-10x+9y=-12...(1)

\frac{y}{3}+\frac{x}{3}=\frac{13}{16}

\frac{x+y}{3}=\frac{13}{16}

16x+16y=39...(2)

Equation (1) multiply by 8 and equation (2) multiply by 5 and then adding equation (1) and (2)

152y=99

y=\frac{99}{152}

Substitute the values of y in equation(1)

-10x+9(\frac{99}{152}=-12

10x=\frac{891}{152}+12=\frac{891+1824}{152}=\frac{2715}{152}

x=\frac{2715}{152\times 10}=\frac{543}{304}

#Learn more:

https://brainly.in/question/5255641:Answered by Deepti

Similar questions