Math, asked by abhishek654, 1 year ago

solution of mathematics

Attachments:

Answers

Answered by theAmankr
26
please ho through the image,Hope that helps
Attachments:
Answered by aquialaska
23

Answer:

Given: x=\frac{5-\sqrt{3}}{5+\sqrt{3}}\:\:and\:\:y=\frac{5+\sqrt{3}}{5-\sqrt{3}}

To Show: x^2-y^2=\frac{-280\sqrt{3}}{121}

First find value of x²

x^2=(\frac{5-\sqrt{3}}{5+\sqrt{3}})^2

x^2=\frac{(5-\sqrt{3})^2}{(5+\sqrt{3})^2}

x^2=\frac{25+3-10\sqrt{3}}{25+3+10\sqrt{3}}

x^2=\frac{28-10\sqrt{3}}{28+10\sqrt{3}}

x^2=\frac{14-5\sqrt{3}}{14+5\sqrt{3}}

Now,  find value of y²

y^2=(\frac{5+\sqrt{3}}{5-\sqrt{3}})^2

y^2=\frac{(5+\sqrt{3})^2}{(5-\sqrt{3})^2}

y^2=\frac{25+3+10\sqrt{3}}{25+3-10\sqrt{3}}

y^2=\frac{28+10\sqrt{3}}{28-10\sqrt{3}}

y^2=\frac{14+5\sqrt{3}}{14-5\sqrt{3}}

Consider,

x^2-y^2=\frac{14-5\sqrt{3}}{14+5\sqrt{3}}-\frac{14+5\sqrt{3}}{14-5\sqrt{3}}

=\frac{(14-5\sqrt{3})^2-(14+5\sqrt{3})^2}{(14+5\sqrt{3})(14-5\sqrt{3})}

=\frac{196+75-140\sqrt{3}-196-75-140\sqrt{3}}{196-75}

=\frac{-280\sqrt{3}}{121}

Hence Proved.

Similar questions