English, asked by Anonymous, 8 months ago

Solution please.......​

Attachments:

Answers

Answered by BrainlyQueen01
20

Answer:

p = 0

q = - 1/11

Explanation:

Given,

\bf \dfrac{7 +\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}=p-7\sqrt{5}q

Consider LHS,

\tt \dfrac{7 +\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}

Rationalising the denominator;

\tt \dfrac{7 +\sqrt{5}}{7-\sqrt{5}}*\dfrac{7 +\sqrt{5}}{7+\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}*\dfrac{7 - \sqrt{5}}{7-\sqrt{5}}

\tt \longrightarrow \dfrac{(7 +\sqrt{5})^2}{(7)^2-(\sqrt{5})^2}-\dfrac{(7 - \sqrt{5})^2}{(7)^2-(\sqrt{5})^2}

[ ∵ (a + b)(a - b) = a² - b² ]

\tt \longrightarrow \dfrac{49 +14\sqrt{5}+5}{49-5}-\dfrac{49 - 14\sqrt{5}+5}{49-5}

\tt \longrightarrow \dfrac{54 +14\sqrt{5}}{44}-\dfrac{ 54- 14\sqrt{5}}{44}

\tt \longrightarrow \dfrac{54 +14\sqrt{5}-54+14\sqrt{5}}{44}

\tt \longrightarrow \dfrac{28\sqrt{5}}{44}

\boxed{\bf \longrightarrow \dfrac{7\sqrt{5}}{11}}

Comparing LHS with RHS, we get -

\implies \tt \dfrac{7\sqrt{5}}{11}=p - 7\sqrt{5}

Therefore, the values of p and q are :

  • p = 0
  • q = \tt \dfrac{-1}{11}
Answered by vaishnavisinghscpl45
1

q =  \frac{ - 1}{11}

Similar questions