Physics, asked by manalis1916, 1 year ago

solv this for me....... ​

Attachments:

Answers

Answered by Swarup1998
16

Solution :

Given :

          x = \displaystyle\frac{a-b}{a+b}

          y = \displaystyle\frac{b-c}{b+c}

          z = \displaystyle\frac{c-a}{c+a}

Now, \displaystyle\frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)}

\displaystyle=\frac{(1+\frac{a-b}{a+b})(1+\frac{b-c}{b+c})(1+\frac{c-a}{c+a})}{(1-\frac{a-b}{a+b})(1-\frac{b-c}{b+c})(1-\frac{c-a}{c+a})}

\displaystyle=\frac{\frac{a+b+a-b}{a+b}\times\frac{b+c+b-c}{b+c}\times\frac{c+a+c-a}{c+a}}{\frac{a+b-a+b}{a+b}\times\frac{b+c-b+c}{b+c}\times\frac{c+a-c+a}{c+a}}

\displaystyle=\frac{2a\times 2b\times 2c}{2b\times 2c\times 2a}

\displaystyle=1

\to \boxed{\frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)}=1}


Swarup1998: :-)
Anonymous: nice
Anonymous: xd
Answered by Anonymous
6

hii mate check your attachment plse!!

Attachments:
Similar questions