Math, asked by kanishkamandal2003, 1 year ago

solve :
1+(2k-3)^3 = 0​

Answers

Answered by hizarazik1270
0

Answer:

Step-by-step explanation:

1+(2k-3)³=0

(2k-3)³=0

applying identity:

(a-b)³=a³-b³-3ab(a-b)

== (2k)³-3³-3x2k x ( 2k-3)

==8k³-27-18k x 2k-3=0

==-36k-3-27+8k³=0

== -36k -3-+8k³=0

== -36k+8k³=3

== k+8k³=3÷36=12

k+k³= 12÷8=6÷4=3÷2

2k³=3/2

k³=3/4

∴k-=∛3/4

please mark as brainliest

Answered by Anonymous
4

Answer:

Step-by-step explanation:

(a-b)³=a³-b³-3ab(a-b)

== (2k)³-3³-3x2k x ( 2k-3)

==8k³-27-18k x 2k-3=0

==-36k-3-27+8k³=0

== -36k -3-+8k³=0

== -36k+8k³=3

== k+8k³=3÷36=12

k+k³= 12÷8=6÷4=3÷2

2k³=3/2

k³=3/4

∴k-=∛3/4

Similar questions