Math, asked by anushka1174, 1 year ago

solve: 1/x-1+2/x-2=3/x-3​

Answers

Answered by pinky162
1

Step-by-step explanation:

i hope this is help you......

Attachments:
Answered by Anonymous
0

Answer:

\underline{\bigstar\:\textsf{According to the Question Now :}}\\\\\implies\tt x + \dfrac{1}{x} = 4 \\\\ \textsf{Squaring Both Sides :} \\\\\implies\tt\bigg(x + \dfrac{1}{x} \bigg)^{2} ={(4)}^{2}\\\\\implies\tt {x}^{2} +\dfrac{1}{{x}^{2}} + 2 \times x \times \dfrac{1}{x} = 16 \\\\\\\implies\tt {x}^{2} +\dfrac{1}{{x}^{2}} = 16 - 2 \\\\\\\implies\tt {x}^{2} +\dfrac{1}{{x}^{2}} =14\\\\ \textsf{Squaring Both Sides :} \\\\\implies\tt \bigg({x}^{2} +\dfrac{1}{{x}^{2}}\bigg) ={(14)}^{2}\\\\\\\implies\tt {x}^{4} +\dfrac{1}{{x}^{4}} + 2 \times{x}^{2} \times\dfrac{1}{{x}^{2}} = 196\\\\\\\implies\tt {x}^{4} +\dfrac{1}{{x}^{4}} = 196 - 2\\\\\\\implies\large\boxed{\tt{x}^{4} +\dfrac{1}{{x}^{4}} = 194}

Similar questions