Math, asked by levinkatoki, 1 year ago

Solve: 1/x - 1/x-3=3, where x is not equal to zero​

Answers

Answered by ihrishi
2

Answer:

 \frac{1}{x}  -  \frac{1}{x - 3}  = 3 \\  \therefore \:  \frac{x - 3 - x}{x(x - 3)}  = 3 \\ \therefore \:  \frac{ - 3}{x(x - 3)}  = 3 \\  \therefore \frac{ - 1}{x(x - 3)}  = 1 \\ \therefore \:  - 1 = x(x - 3) \\  \therefore \: 0 =  {x}^{2}  - 3x + 1 \\  \therefore \: {x}^{2}  - 3x + 1 = 0 \\ comparing \: it \: with \: a {x}^{2}  + bx + c = 0 \\ we \: find :  \\ a = 1 \\ b =  - 3 \\ c = 1 \\now \\   {b}^{2}  - 4ac \\  =  {( - 3)}^{2}  - 4 \times 1 \times 1  \\ = 9 - 4  \\ = 5 \\ by \: formula \\ x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  =  \frac{ - ( - 3)\pm \sqrt{ 5 }}{2 \times 1}  \\  \therefore \:  x \: =  \frac{ 3\pm \sqrt{ 5 }}{2 }   \\ so \\ x =\frac{ 3 +  \sqrt{ 5 }}{2 }  \: \: or \:   \: x =\frac{ 3  -   \sqrt{ 5 }}{2 }

Similar questions