Math, asked by tazanna29, 6 months ago

solve 1/x + 1/(x-6) = 1/4​

Answers

Answered by rkpr587
0

Answer:

Step-by-step explanation:

1 result(s) found

x=12

See steps

Step by Step Solution:

More Icon

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    1/x+1/6-(1/4)=0  

Step by step solution :

STEP

1

:

           1

Simplify   —

           4

Equation at the end of step

1

:

  1    1     1

 (— +  —) -  —  = 0  

  x    6     4

STEP

2

:

           1

Simplify   —

           6

Equation at the end of step

2

:

  1    1     1

 (— +  —) -  —  = 0  

  x    6     4

STEP

3

:

           1

Simplify   —

           x

Equation at the end of step

3

:

  1    1     1

 (— +  —) -  —  = 0  

  x    6     4

STEP

4

:

Calculating the Least Common Multiple

4.1    Find the Least Common Multiple

     The left denominator is :       x  

     The right denominator is :       6  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 0 1 1

3 0 1 1

Product of all  

Prime Factors  1 6 6

                 Number of times each Algebraic Factor

           appears in the factorization of:

   Algebraic    

   Factor      Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

x  1 0 1

     Least Common Multiple:

     6x  

Calculating Multipliers :

4.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 6

  Right_M = L.C.M / R_Deno = x

Making Equivalent Fractions :

4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.       6

  ——————————————————  =   ——

        L.C.M             6x

  R. Mult. • R. Num.       x

  ——————————————————  =   ——

        L.C.M             6x

Adding fractions that have a common denominator :

4.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

6 + x     x + 6

—————  =  —————

 6x        6x  

Equation at the end of step

4

:

 (x + 6)    1

 ——————— -  —  = 0  

   6x       4

STEP

5

:

Calculating the Least Common Multiple

5.1    Find the Least Common Multiple

     The left denominator is :       6x  

     The right denominator is :       4  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 2 2

3 1 0 1

Product of all  

Prime Factors  6 4 12

                 Number of times each Algebraic Factor

           appears in the factorization of:

   Algebraic    

   Factor      Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

x  1 0 1

     Least Common Multiple:

     12x  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 3x

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (x+6) • 2

  ——————————————————  =   —————————

        L.C.M                12x    

  R. Mult. • R. Num.       3x

  ——————————————————  =   ———

        L.C.M             12x

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

(x+6) • 2 - (3x)     12 - x

————————————————  =  ——————

      12x             12x  

Equation at the end of step

5

:

 12 - x

 ——————  = 0  

  12x  

STEP

6

:

When a fraction equals zero

6.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 12-x

 ———— • 12x = 0 • 12x

 12x  

Now, on the left hand side, the  12x  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  12-x  = 0

Solving a Single Variable Equation:

6.2      Solve  :    -x+12 = 0  

Subtract  12  from both sides of the equation :  

                     -x = -12

Multiply both sides of the equation by (-1) :  x = 12

One solution was found :

x = 12

Answered by ArijitShee2003
14

Answer:

It will help you....I think..if you satisfied please like..

Attachments:
Similar questions