Math, asked by LoverLosr01, 1 month ago

Solve :-
1/(x+3) + 1/(2x-1) = 11/(7x+9), x ≠ -3, 1/2, -9/7​

Answers

Answered by BrainlyTwinklingstar
2

Answer

We have,

\sf \dfrac{1}{(x + 3)} + \dfrac{1}{(2x - 1)} = \dfrac{11}{(7x + 9)}

\sf \dashrightarrow \dfrac{(2x - 1) + (x +3)}{(x + 3) (2x - 1)} = \dfrac{11}{(7x + 9)}

\sf \dashrightarrow \dfrac{(3x + 2)}{{2x}^{2} + 5x - 3} = \dfrac{11}{(7x + 9)}

By cross multiplication,

\dashrightarrow \sf (3x + 2) (7x + 9) = 11 ({2x}^{2} + 5x -3)

\sf \dashrightarrow {21x}^{2} + 41x + 18 = {22x}^{2} + 55x - 33

\sf \dashrightarrow {x}^{2} + 14x - 51 = 0

\sf \dashrightarrow {x}^{2} + 17x - 3x - 51 = 0

\sf \dashrightarrow x (x + 17) - 3 (x + 17) = 0

\sf \dashrightarrow (x + 17) (x - 3) = 0

\sf \dashrightarrow x + 17 = 0 \: \: or \: \: x = 3

Thus, -17 and 3 are the roots of the given equation.

Similar questions